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Abstract

An extensive literature in finance has found that return predictability can have important
effects on optimal asset allocations. While some papers have also considered the portfolio effects
of parameter and model uncertainty, model instability has received far less attention. This poses
an important concern when the parameters of return prediction models are estimated on data
samples spanning several decades during which the parameters are unlikely to remain constant.

This paper adopts a new approach that accounts for breaks to return prediction models both in
the historical estimation period and at future points. Empirically we find evidence of multiple
breaks in return prediction models based on the dividend yield or a short interest rate. Our
analysis suggests that model instability is a very important source of investment risk for investors
with long horizons and that breaks can lead to a negative slope in the relationship between the
investment horizon and the proportion of wealth that a buy-and-hold investor allocates to stocks.
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1. Introduction

Stock market investors face a daunting array of risks. First and foremost is the innovation compo-

nent of stock returns that cannot be predicted in the context of any model for the return generating

process. This source of uncertainty is substantial, given the low predictive power of return forecast-

ing models. Second, even conditional on a particular forecasting model, investors are confronted

with parameter uncertainty, i.e. the effect of not knowing the true model parameters (Kandel and

Stambaugh (1996) and Barberis (2000)). Third, investors do not know the state variables or func-

tional form of the true return process and so face model uncertainty (Avramov (2002) and Cremers

(2002)). This paper deals with a fourth source of uncertainty that is of particular importance to

long-run investors, namely model instability, i.e. random changes or “breaks” to the parameters of

the return generating process.

Conventional practice in economics and finance is to compute forecasts conditional upon a

maintained model whose parameters are assumed to be constant both throughout the historical

sample and during the future periods to which the forecasts apply. This procedure ignores that, over

estimation samples that often span several decades, the relation between economic variables is likely

to change. Instability in economic models may reflect institutional, legislative and technological

change, financial innovation, changes in stock market participation, large macroeconomic (oil price)

shocks and changes in monetary targets or tax policy.1 In the context of financial return prediction

models, Merton’s intertemporal CAPM suggests that time-variations in aggregate risk aversion

may lead to changes in the relationship between expected returns and predictor variables tracking

movements in market risk or investment opportunities.2

Instability in the relation between stock returns and predictor variables such as the dividend

yield and short-term interest rates has been documented empirically in several studies. Pesaran

and Timmermann (1995), Bossaerts and Hillion (1999), Lettau and Ludvigson (2001), Paye and

Timmermann (2006), Ang and Bekaert (2007) and Goyal and Welch (2008) find substantial varia-

tion across subsamples in the coefficients of return prediction models and in the degree of return

predictability.3 Building on this evidence, recent studies such as Dangl and Halling (2008) and Jo-

hannes, Korteweg, and Polson (2009) have proposed capturing time-variation in return prediction

models by assuming that some of the model parameters follow a random walk and thus change

every period.

In this paper we focus instead on the effect of rare but large structural breaks as opposed to

small parameter changes occurring every period. The distinction between rare, large breaks versus

1For example, the introduction of SEC rule 10b-18 in November 1982 changed firms’ ability to repurchase shares

and thus may have changed firms’ payout policy, in turn affecting the relation between stock returns and dividend

yields. Examples of changes in the dynamics and predictive content of short-term interest rates include the Accord

of 1951 and the monetarist experiment from 1979 to 1982.
2Menzly and Veronesi (2004) provide theoretical reasons for expecting time-variation in the relation between

expected stock returns and predictor variables such as the dividend yield.
3Studies such as Barsky (1989), Dimson, Marsh, and Staunton (2002), McQueen and Roley (1993) and Boyd and

Jagannathan (2005) have found evidence of time-variations in the correlation between stock and bond returns or stock

returns and economic news variables.
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frequent, small breaks can be difficult to make in practice (Elliott and Mueller (2006)). However, our

analysis allows us to pinpoint the most important times where the return prediction model undergoes

relatively sharp changes, which provides insights into the interpretation of the economic sources of

model instability. Sudden, sharp changes in model parameters are consistent with empirical findings

by both Dangl and Halling (2008) and Johannes, Korteweg, and Polson (2009) that the change in

the parameters of return predictability models at times can be large. By considering few, large

breaks, our approach is close in spirit to Pastor and Stambaugh (2001) who consider breaks in the

risk-return trade-off and Lettau and van Nieuwerburgh (2008) who consider a discrete break to the

steady state value of a single predictor variable (the dividend yield).

Our approach builds on Chib (1998), Pastor and Stambaugh (2001) and Pesaran, Pettenuzzo,

and Timmermann (2006) in adopting a changepoint model driven by an unobserved discrete state

variable. Specifically, we generalize the univariate model in Pesaran, Pettenuzzo, and Timmermann

(2006) to a multivariate setting so instability can arise either in the conditional model used to

forecast returns, in the marginal process generating the predictor variable(s) or in the correlation

between innovations to the two equations. Forecasting returns in this model requires accounting for

the probability and magnitude of future breaks. To this end, we introduce a meta distribution that

straddles the parameters drawn for the individual regimes and characterizes how the parameters

vary across different break segments. The model nests as special cases both a pooled scenario where

the similarity between the parameters in the different regimes is very strong (corresponding to a

narrow dispersion in the distribution of parameters across regimes) as well as a more idiosyncratic

scenario where these parameters have little in common and can be very different (corresponding to

a wide dispersion). Which of these cases is most in line with the data is reflected in the posterior

meta distribution.

The proposed model is very general and allows for uncertainty about the timing (dates) of

historical breaks as well as uncertainty about the number of breaks and their magnitude. We

also extend our setup to allow for uncertainty about the identity of the predictor variables (model

uncertainty) using Bayesian model averaging techniques. Hence, investors are not assumed to

know the true model or its parameter values, nor are they assumed to know the number, timing

and magnitude of past or future breaks. Instead, they come with prior beliefs about the meta

distribution from which current and future values of the parameters of the return model are drawn

and update these beliefs efficiently as new data is observed.

Instability in model parameters is particularly important to investors’ long-run asset allocation

decisions which crucially rely on forecasts of future returns. Long investment horizons make it more

likely that breaks to model parameters will occur and some of these breaks could adversely affect

the investment opportunity set, thereby significantly increasing investment risks. Asset allocation

exercises mostly assume that although the parameters of the return prediction model or the identity

of the “true” model may not be known to investors, the parameters of the data generating process

remained constant through time (e.g., Barberis (2000), Pastor and Stambaugh (2009)). Studies that

have allowed for time-varying model parameters such as Dangl and Halling (2008) and Johannes,

Korteweg, and Polson (2009) only consider mean-variance investors with single-period investment
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horizons. Our focus is instead on the effect of model instability on the risks faced by investors with

a long investment horizon.

Our empirical analysis investigates predictability of US stock returns using two popular predictor

variables, namely the dividend yield and the short interest rate. We find evidence of multiple breaks

in return models based on either predictor variable in data covering the period 1926-2005. Many of

the break dates coincide with major events such as changes in the Fed’s operating procedures (1979,

1982), the Great Depression, the Treasury-Fed Accord (1951) and the growth slowdown following

the oil price shocks in the early 1970s. Variation in model parameters is found to be extensive.

For example, the predictive coefficient of the dividend yield varies between zero and 2.6, while the

coefficient of the T-bill rate varies even more, between -9.4 and 3.3, across break segments.

Structural breaks are found to have a large effect on investors’ optimal asset allocations. For

example, in the model with predictability from the dividend yield but no breaks, the allocation

to stocks rises from 40% at short horizons to 60% at the five-year horizon. Once past and future

breaks are considered, the allocation to stocks declines from close to 100% at short horizons to 10%

at the five-year horizon. Our analysis suggests that model instability is a more important source

of investment risk than parameter estimation uncertainty for investors with long horizons and that

breaks can lead to a steep negative slope in the relationship between the investment horizon and

the proportion of wealth that a buy-and-hold investor allocates to stocks.4

Our portfolio allocation results lend further credence to the finding in Pastor and Stambaugh

(2009) that the long-run risks of stocks can be very high. In a model that allows for imperfect

predictors and unknown, but stable parameters of the data generating process, Pastor and Stam-

baugh find that the true per-period predictive variance of stock returns can be increasing in the

investment horizon due to the compound effect of uncertainties about current and future expected

returns (and their relationship to observed predictor variables) and estimation risk. While this

finding is similar to ours, the mechanism is very different: Pastor and Stambaugh (2009) derive

their results from investors’ imperfect knowledge of current and future expected returns and model

parameters, whereas model instability is the key driver behind our results.

The paper is organized as follows. Section 2 introduces the breakpoint methodology and Section

3 presents empirical estimates for return prediction models based on the dividend yield or the

short interest rate. Section 4 shows how investors’ optimal asset allocation can be computed while

accounting for past and future breaks. Section 5 considers asset allocations empirically for a buy-

and-hold investor. Section 6 proposes various extensions to our approach and Section 7 concludes.

Technical details are provided in appendices at the end of the paper.

4Consistent with our results, Johannes et al. (2009) also find that parameter estimation uncertainty has a smaller

effect on the asset allocation than uncertainty about changes to model parameters. While Dangl and Halling (2008)

find that estimation uncertainty plays a dominant role, they also report that uncertainty about time-variation in

coefficients is important, particularly during periods with turmoil such as the early seventies. Barberis (2000) finds

that estimation risk significantly affects investors’ long-run asset allocations, but this finding is based on a relatively

short data sample.
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2. Methodology

Studies of asset allocation under return predictability (e.g., Barberis (2000), Campbell and Viceira

(2001), Campbell, Chan, and Viceira (2003) and Kandel and Stambaugh (1996)) have mostly used

vector autoregressions (VARs) to capture the relation between asset returns and predictor variables.

We follow this literature and focus on a simple model with a single risky asset and a single predictor

variable. This gives rise to a bivariate model relating returns (or excess returns) on the risky asset

to a predictor variable, xt. Empirically, the coefficients on the lagged returns are usually found to

be small, so we follow common practice and restrict them to be zero. The resulting model takes

the form

zt = B0x̃t−1 + ut, (1)

where zt = (rt, xt)
0 , x̃t−1 = (1, xt−1)

0, rt is the stock return at time t in excess of a short risk-free

rate, while xt is the predictor variable and ut ∼ IIDN(0,Σ), where Σ = E[utu
0
t] is the covariance

matrix. We refer to μr and μx as the intercepts in the equation for the return and predictor variable,

respectively, while βr and βx are the coefficients on the predictor variable in the two equations:

rt = μr + βrxt−1 + urt

xt = μx + βxxt−1 + uxt. (2)

2.1. Predictive Distributions of Returns under Breaks

Asset allocation decisions require the ability to evaluate expected utility associated with the real-

ization of future payoffs on risky assets. This, in turn, requires computing expectations over the

predictive distribution of cumulated returns during an h−period investment horizon [T, T +h] con-

ditional on information available at the time of the investment decision, T , which we denote by

ZT . To compute the predictive distribution of returns while allowing for breaks, we need to make

assumptions about the probability that future breaks occur, their likely timing as well as the size

of such breaks. If more than one break can occur over the course of the investment horizon, we also

need to model the distribution from which future regime durations are drawn. We next explain how

this is done.

To capture instability in the parameters in equation (2), we build on the multiple change point

model proposed by Chib (1998). Shifts to the parameters of the return prediction model are

captured through an integer-valued state variable, St, that tracks the regime from which a particular

observation of returns and the predictor variable, xt, are drawn. For example, st = k indicates that

zt has been drawn from f (zt| Zt−1,Θk) , where Zt−1 = {z1, ..., zt−1} is the information set at time
t − 1, while a change from st = k to st+1 = k + 1 shows that a break has occurred at time t + 1.

Location and scale parameters in regime k are collected in Θk = (Bk,Σk) . Allowing for K breaks
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or, equivalently, K + 1 break segments, between t = 1 and t = T , our model takes the form

zt = B01x̃t−1 + ut, E[utu
0
t] = Σ1 for τ0 ≤ t ≤ τ1 (st = 1)

zt = B02x̃t−1 + ut, E[utu
0
t] = Σ2 for τ1 + 1 ≤ t ≤ τ2 (st = 2)

...
...

...

zt = B0kx̃t−1 + ut, E[utu
0
t] = Σk for τk−1 + 1 ≤ t ≤ τk (st = k)

...
...

...

zt = B0K+1x̃t−1 + ut, E[utu
0
t] = ΣK+1 for τK + 1 ≤ t ≤ T (st = K + 1)

(3)

Here ΥK = {τ0, ...., τK} is the collection of break points with τ0 = 1, and the innovations ut
are assumed to be multivariate Gaussian with zero mean. Within each regime we decompose the

covariance matrix, Σk, into the product of a diagonal matrix representing the standard deviations

of the variables, diag(ψk), and a correlation matrix, Λk:

Σk = diag(ψk)× Λk × diag(ψk). (4)

This specification allows both mean parameters, volatilities and correlations to vary across regimes.5

We collect the regression coefficients, error term variances and correlation parameters in Θ =

(vec(B)k, ψk,Λk)
K+1
k=1 .

The state variable St is assumed to be driven by a first order hidden Markov chain whose

transition probability matrix is designed so that, at each point in time, St can either remain in the

current state or jump to the subsequent state.6 The one-step-ahead transition probability matrix

therefore takes the form

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1,1 p1,2 0 · · · 0

0 p2,2 p2,3 · · · 0
...

...
...

...
...

0 · · · 0 pK,K pK,K+1

0 0 . . . 0 pK+1,K+1 pK+1,K+2

0 0 . . . 0 pK+2,K+2
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (5)

Here pk,k+1 = Pr (st = k + 1| st−1 = k) is the probability of moving to regime k+1 at time t given

that we are in state k at time t− 1 so pk,k+1 = 1− pk,k. K is the number of breaks in the historical

5Allowing for time-variations in both first and second moments could be important in practice. In a model that

allows for stochastic volatility, Johannes, Korteweg, and Polson (2009) find that the level of return volatility affects

the signal-to-noise ratio of the return equation and therefore also affects investors’ ability to infer the underlying state

and compute expected returns.
6Some studies assume that the parameters of the return equation are driven by a Markov switching process with

two or three states, e.g., Ang and Bekaert (2002), Ang and Chen (2002), Guidolin and Timmermann (2008) and

Perez-Quiros and Timmermann (2000). The assumption of a fixed number of states amounts to imposing a restriction

that ‘history repeats’. This approach is well suited to identify patterns in returns linked to repeated events such as

recessions and expansions. It is less clear that it is able to capture the effects of institutional and technological changes

over long spans of time. These are more likely to lead to genuinely new and historically unique regimes.
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sample up to time T so the (K + 1) × (K + 1) sub-matrix in the upper left corner of P , denoted

p = (p1,1, p2,2, ..., pK+1,K+1)
0, describes possible breaks in the historical data sample {z1, ..., zT}.

The remaining part of P describes the breakpoint dynamics over the future out-of-sample period

from T to T + h.7 The special case without breaks corresponds to K = 0 and p1,1 = 1.

Notice that the persistence parameters in (5) are regime-specific. This assumption means that

regimes can differ in their expected duration−the closer is pk,k to one, the longer the regime is
expected to last. Furthermore, pk,k is assumed to be independent of pj,j , for j 6= k, and is drawn

from a beta distribution:

pk,k ∼ Beta (a, b) . (6)

This break model is quite different from the drifting coefficients (random walk) models studied by

Dangl and Halling (2008) and Johannes, Korteweg, and Polson (2009). The latter are designed to

obtain a good local approximation to parameter values at any given point in time, whereas our

break model attempts to capture rare, but large shifts in parameter values that affect the return

distribution, particularly at longer horizons.

2.2. Meta Distributions

Since we are interested in forecasting future returns, we follow Pastor and Stambaugh (2001) and

Pesaran, Pettenuzzo, and Timmermann (2006) and adopt a hierarchical prior formulation, but

extend those studies to allow for structural breaks in a multivariate setting.8 To this end we assume

that the location and scale parameters within each regime, (Bk, Σk), are drawn from common meta

distributions which characterize the degree of similarity in the parameters across different regimes.

Suppose for example that the mean parameters do not vary much across regimes but that the

variance parameters do. This will show up in the form of a wide dispersion in the meta distribution

for the scale parameters and a narrow dispersion in the meta distribution for the location parameters.

The assumption that the parameters are drawn from a common meta distribution implies that

data from previous regimes carry information relevant for current data and for the new parameters

after a future break. By using meta distributions that pool information from different regimes, our

approach makes sure that historical information is used efficiently in estimating the parameters of

the current regime.

We next describe the meta distributions in more detail. We use a random coefficient model

to introduce a hierarchical prior for the regime coefficients in (3) and (4), {Bk, diag(ψk),Λk}. We
assume that there is a single return series and, for generality, m− 1 predictor variables for a total

7Following Chib (1998), estimation proceeds under the assumption ofK breaks in the historical sample (1 ≤ t ≤ T ).

This assumption greatly simplifies estimation. We show later that uncertainty about the number of in-sample breaks

can be integrated out using Bayesian model averaging techniques.
8Bai, Lumsdaine, and Stock (1998) apply a deterministic procedure to detect breaks in multivariate time series

models and find that when break dates are common across equations, the resulting breaks are estimated more precisely.

The power to detect breaks can also increase when the breaks are estimated from a multivariate model. Their frame-

work is not well suited for our purpose, however, since asset allocation exercises build on the predictive distribution

of future returns and thus require modeling the stochastic process underlying the breaks.
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of m equations in the prediction model (3) and further assume that the m2 location parameters

are independent draws from a normal distribution, vec(B)k ∼ N (b0, V0), k = 1, ...,K + 1, while

the m error term precision terms ψ−2k,i are independent and identical draws (IID) from a Gamma

distribution, ψ−2k,i ∼ Gamma
³
v0,i
2 ,

v0,id0,i
2

´
, i = 1, ...,m. Finally, the m (m− 1) /2 correlations,

λk,i,c, are IID draws from a normal distribution, λk,i,c ∼ N(μρ,i,c, σ
2
ρ,i,c), i, c = 1, ...,m, i < c,

truncated so the correlation matrix is positive definite which in the two-equation model means that

λk,i,c ∈ (−1, 1). Hence b0, v0,i and μρ,i,c represent location parameters, while V0, d0,i and σ2ρ,i,c are

scale parameters of the three meta distributions.

The pooled scenario in which all parameters are identical across regimes and the case where

the parameters of each regime are virtually unrelated can be seen as special cases nested in our

framework. Which scenario most closely represents the data can be inferred from the estimates of

the location parameters of the meta distribution V0, d0,i and σ2ρ,i,c.

To characterize the parameters of the meta distribution, we assume that9

b0 ∼ N
³
μ
β
,Σβ

´
, (7)

V −10 ∼ W
³
V −1β , νβ

´
,

whereW (.) is a Wishart distribution and μ
β
, Σβ, vβ and V β are prior hyperparameters that need to

be specified. The hyperparameters v0,i and d0,i of the error term precision are assumed to follow an

exponential and Gamma distribution, respectively (George, Makov, and Smith (1993)) with prior

hyperparameters ρ
0,i
, c0,i and d0,i:

v0,i ∼ Exp
³
−ρ

0,i

´
, (8)

d0,i ∼ Gamma
¡
c0,i, d0,i

¢
. (9)

Following Liechty, Liechty, and Müller (2004), we specify the following distributions for the hyper-

parameters of the correlation matrix:

μρ,i,c ∼ N
³
μ
μ,i,c

, τ2i,c

´
, (10)

σ−2ρ,i,c ∼ Gamma
¡
aρ,i,c, bρ,i,c

¢
, (11)

where again μ
μ,i,c

, τ2i,c, aρ,i,c and bρ,i,c are prior hyperparameters for each element of the correlation

matrix. Finally, we specify a prior distribution for the hyperparameters a and b of the transition

probabilities,

a ∼ Gamma (a0, b0) , (12)

b ∼ Gamma (a0, b0) . (13)

These are all standard choices of distributions. We collect the hyperparameters of the meta distri-

bution in H =
¡
b0, V0, v0,1, d0,1, ..., v0,m, d0,m, μρ,1,2, σ

2
ρ,1,2, ..., μρ,m−1,m, σ

2
ρ,m−1,m, a, b

¢
.

9Throughout the paper we use underscore bars (e.g. a0) to denote prior hyperparameters.
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2.3. Likelihood function and approximate marginal likelihood

The likelihood function is obtained by extending to the hierarchical setting the approach proposed

by Chip (1998). The likelihood function, evaluated at the posterior means of the regime specific

parameters, Θ∗, hyperparameters, H∗, and transition probabilities, p∗, is obtained from the decom-

position

ln f (ZT |Θ∗,H∗, p∗) =
TX
t=1

ln f (zt| Zt−1,Θ
∗,H∗, p∗) , (14)

where

f (zt| Zt−1,Θ
∗,H∗, p∗) =

K+1X
k=1

f (zt| Zt−1,Θ
∗,H∗, p∗, st = k) p(st = k|Θ∗,H∗, p∗,Zt−1), (15)

and f (zt| Zt−1,Θ∗,H∗, p∗, st = k) is the conditional density of zt given the regime st = k, while

p(st = k|Θ∗,H∗, p∗,Zt−1) =
kX

l=k−1
p∗l,k × p(st−1 = l|Θ∗,H∗, p∗,Zt−1), (16)

(see Appendix 1.) The following expression, which is proportional to the SIC, is used to compute

an asymptotic approximation to the marginal likelihood for a model with K breaks, MK :

p (MK | ZT ) ∝ ln f (ZT |Θ∗,H∗, p∗)− NK × ln(T )
2

,

where NK is the number of parameters for model MK . Approximate posterior model probabilities

for models with up to K̄ breaks can be computed by exponentiating the approximate marginal

likelihood for a model with K breaks divided by the sum of the corresponding terms across models

with K = 0, ..., K̄ breaks.

2.4. Prior elicitation

To the extent possible, choice of priors in the breakpoint model must be guided by economic theory

and intuition. Here we explain the choices made for the baseline results. In section 6 we conduct a

sensitivity analysis to shed light on the importance of these choices.

We impose two constraints on the parameters in the return prediction model, (3). First, to

rule out explosive behavior in the predictor variable (and consequently in stock returns), we impose

that βx < 1. Second, we require the unconditional mean of the predictor variable in each state

to be non-negative, i.e. μx/(1 − βx) ≥ 0. This has a very limited impact on the posterior in-

sample distributions of the individual regime parameters. However, this restriction is important

when generating out-of-sample forecasts and helps eliminate economically non-sensible trajectories

for the predictor variables.

Starting with the prior hyperparameters for the mean of the regression coefficient, b0, we set μβ =

[0, 0, 0, 0.9]0 and Σβ = diag(sc, sc, sc, 1), where sc is a scale factor set to 1,000 to reflect uninformative
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priors. Both predictor variables that we shall consider (the dividend yield and the T-bill rate)

are highly persistent so we specify a more informative prior for the autoregressive coefficient, βx,

and center it at 0.9. The hyperparameters for the prior variance of the regression coefficient, V0,

are set at νβ = 2m + 2, V β = diag(0.5, 5, 0.00001, 0.1) for the dividend yield specification and

V β = diag(0.1, 1000, 0.00001, 0.1) for the T-bill specification. This is sufficient to preserve the

variation in the regression coefficients across regimes and ensures that the mean of the inverse

Wishart distribution exists. The small variation in μx and the somewhat larger variation in μr
reflect the high persistence of the predictor variables, i.e., βx is close to one.

Moving to the variance hyperparameters, we maintain uninformative priors and set c0,i = 1,

d0,i = � (the smallest number that matlab can interpret), and ρ0,i = 1/� in all equations, hence

specifying a very large variance. For the correlation coefficient, λj,1,2, we use an uninformative prior,

i.e. μμ,1,2 = 0, τ21,2 = 100, aρ,1,2 = 1 and bρ,1,2 = 0.01.

Finally, we specify uninformative priors for the hyperparameters a and b of the transition proba-

bilities pk,k in (5), namely a0 = 1 and b0 = �. By using uninformative priors for the hyperparameters

governing the diagonal elements of the transition probability matrix, we allow the data to dictate

the frequency of breaks.

3. Breaks in Return Forecasting Models: Empirical Results

Using the approach from Section 2, we next report empirical results for two commonly used return

prediction models based on the dividend yield or the short interest rate.

3.1. Data

Following common practice in the literature on predictability of stock returns, we use as our de-

pendent variable the continuously compounded return on a portfolio of US stocks comprising firms

listed on the NYSE, AMEX and NASDAQ in excess of a 1-month T-bill rate. Data is monthly and

covers the period 1926:12-2005:12. All data is obtained from the Center for Research in Security

Prices (CRSP).

As forecasting variables we include a constant and either the dividend-price ratio−defined as
the ratio between dividends over the previous twelve months and the current stock price−or the
short interest rate measured by the 1-month T-bill rate obtained from the Fama-Bliss files. The

dividend yield has been found to predict stock returns by many authors including Campbell (1987),

Campbell and Shiller (1988), Keim and Stambaugh (1986) and Fama and French (1988). It has

played a key role in the literature on the asset allocation implications of return predictability

(Kandel and Stambaugh (1996) and Barberis (2000).) Due to its persistence and the large negative

correlation between shocks to the dividend yield and shocks to stock returns, the dividend yield

is known to generate a large hedging demand for stocks, particularly at long investment horizons.

The short interest rate has also been found to predict stock returns (Campbell (1987) and Ang and

Bekaert (2002).) Table 1 reports descriptive statistics for the three variables.

Before turning to the empirical results we briefly summarize the estimation setup. Both the
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dividend yield and T-bill rate models were estimated using a Gibbs sampler with 2,500 draws

and the first 500 draws discarded to allow the sampler to achieve convergence.10 We performed

a variety of MCMC convergence diagnostics, ranging from autocorrelation estimates, Raftery and

Lewis (1992a), Raftery and Lewis (1992b) and Raftery and Lewis (1995) MCMC diagnostics, Geweke

(1992) numerical standard errors and relative numerical efficiency estimates, and the Geweke chi-

squared test comparing the means from the first and last part of the sample. We found very little

evidence of autocorrelation in the Gibbs sampler draws. This is further confirmed by the thinning

ratio estimates obtained from the Raftery and Lewis (1995) diagnostics which were very close to

unity. Finally, the Geweke chi-squared test of the means from the first 20% of the sample versus the

last 50% confirmed that the Gibbs sampler has achieved an equilibrium state. Appendix 1 provides

details of the Gibbs sampler used to estimate the return prediction model with multiple breaks.

3.2. Predictability from the Dividend Yield

Determining whether the return prediction models are subject to breaks and, if so, how many

breaks the data support, is the first step in our analysis. For a given number of breaks, K, we get

a new model, MK , with its own set of parameters. For all values of K, the models are estimated

by maximum likelihood with states based on the posterior modes of the break point probabilities.

Table 2 provides a comparison of models with different numbers of breaks by reporting various

measures of model fit such as the log-likelihood and the approximate marginal likelihood described

earlier.

We find strong support for structural break in the return prediction model based on the dividend

yield. The approximate posterior odds ratios for the models with multiple breaks are all very high

relative to a model with no breaks. Among models with up to ten breaks, an eight-break specification

obtains a posterior probability weight of nearly one. Although eight breaks may appear to be a

large number, it is consistent with the evidence reported by Pastor and Stambaugh (2001) of 15

breaks in the equity premium over a sample (1834-1999) twice the period covered here.

Return models that allow for breaks include a larger number of parameters than the conventional

full-sample model so one might be concerned that they overfit the data. This is not an issue here,

however, since we select the break point specification by the SIC, which approximates the marginal

likelihood. Marginal likelihood captures the models’ out-of-sample prediction record and so penalizes

for an increase in the numbers of estimated parameters.

For the model with eight breaks, Figure 1 shows the time of the associated breaks. More

precisely, for an interval around the posterior modes of the eight break dates, each diagram shows

the posterior probability of there being one break. Most break dates are reasonably precisely

identified in the form of either single spikes with probabilities exceeding one-half or narrow spans

covering a few months. There are some exceptions to this, however, notably the break dated 1940,

10We used a Windows XP based server with 8 Xeon x5355 2.66 GHz processors and 32 Gigabytes of DRAM. The

Gibbs sampler for the dividend yield model based on eight breaks finished in 35 minutes, while the Gibbs sampler for

the T-bill model based on five breaks ran for 33 minutes.
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where the alternative date of 1943 also achieves a high posterior probability, and the break dated

1951, for which 1954 is an equally plausible date.11

Most of the break locations are associated with major events and occurred around the Great

Depression (1933), World War II (1940), the Treasury-Fed Accord (1951), and the major oil price

shocks of the early seventies and the resulting growth slowdown (1974). Some breaks are also

associated with changes in price dynamics, e.g., the interval spanning the October 1987 stock

market crash (1986 and 1988) and, more recently, the take-off accompanying the bull market of the

nineties (1996).

These break dates suggest that changes to the conditional equity premium are associated with

events such as major wars, changes to monetary policy and important slowdowns in economic

activity caused, e.g., by major supply shocks.

Parameter estimates for the model with eight breaks (nine regimes) as well as the no-break model

are reported in Table 3. Consistent with results in the empirical literature, full-sample estimates

of the parameters in the return equation (2) with no breaks (shown in the first column) reveal a

mean coefficient on the dividend yield that is positive but slightly less than two standard errors

away from zero.

Turning to the estimates of the break model, the mean of the dividend yield coefficient in the

return equation ranges from a low of zero in the earliest sample (1926-1933) to 2.6 during the final

period (1996-2005). The substantial time variation in the coefficient of the dividend yield is consis-

tent with the sub-sample estimates reported by Ang and Bekaert (2007). It is also consistent with

the finding in Lettau and van Nieuwerburgh (2008) that uncertainty over the magnitude of breaks

is very large. The standard deviation parameter of the return equation also varies considerably

across regimes, from a high of 10% per month during the Great Depression to a low of only 3.1%

per month from 1988-1996.

The parameter estimates for the dividend yield equation show that this process is highly per-

sistent in all regimes with a mean autoregressive parameter that varies from 0.94 to 0.97. The

variance of the dividend yield is again highest in the first regime and becomes much lower after

the final break in 1996. Correlation estimates for the innovations to stock returns and the lagged

dividend yield are large and negative in all regimes with mean values ranging from -0.97 to -0.92.

Transition probabilities are high with mean values that always exceed 0.97 and go as high as 0.992,

corresponding to mean durations ranging from 40 to 140 months.

One of the questions we set out to address in our paper was how similar the parameters of the

return equation are across regimes. To address this question, information on the posterior estimates

of the hyperparameters of the meta distribution is provided in Table 4. To preserve space we only

report the values of the parameters that are easiest to interpret. The parameter tracking the grand

mean of the slope of the dividend yield in the return equation is centered on 0.92 with a standard

deviation centered at 0.50, giving rise to a 95% confidence interval of [0.0, 2.0]. The autoregressive

11Lettau and van Nieuwerburgh (2008) find breaks in the mean of the dividend yield in 1954 and 1994. These are

very similar to two of our break dates, namely 1951 and 1996 with differences likely to be attributed to uncertainty

in the determination of the break dates (1954) and differences in the number of breaks allowed.
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slope βx in the dividend yield equation is centered on a value of 0.95 with a much smaller standard

deviation of only 0.03 and a 95% confidence interval of [0.88, 0.99]. Similarly, the hyperparameter

tracking the correlation between shocks to returns and shocks to the dividend yield is centered on

-0.94 with a modest standard deviation of 0.03. The posterior distributions of the hyperparameters

of the transition probability, a0 and b0, are surrounded by greater uncertainty as indicated by

their relatively large standard deviations. This is consistent with the considerable difference in the

duration of the various regimes identified by our model.

These findings suggest that the greatest variability in parameters across regimes is associated

with the coefficient of the lagged dividend yield in the return equation, the volatility of stock returns

and the duration of the regimes. There is considerably less uncertainty about the persistence of the

dividend yield or the correlation between shocks to returns and shocks to the dividend yield.

3.3. Predictability from the Short Interest Rate

Turning to the return model based on the short interest rate, Table 2 shows that a model with five

breaks is strongly supported by the data. These breaks again appear around the time of major

events such as the Great Depression (1934), the Fed-Treasury Accord (1951), the Vietnam War

(1969) and the beginning and end of the change to the Fed’s operating procedures (1979 and 1982).

Figure 2 shows the posterior probabilities surrounding the modes of the five breakpoints. The

break dates are quite precisely estimated as, in each case, the posterior probabilities define narrow

ranges. The break dated 1969 is surrounded by the greatest uncertainty.

Parameter estimates for the return model with five breaks are displayed in Table 5. The mean

of the coefficient on the lagged T-bill rate in the return equation varies significantly over time,

ranging from -9.4 during the very volatile “monetarist policy experiment” from 1979 to 1982 to 3.3

during 1934-1951. Furthermore, the estimates of the slope on the T-bill rate within each regime are

surrounded by large standard errors, particularly prior to 1951.

The process for the short interest rate is highly persistent with the mean of the autoregressive

coefficient ranging from a low of 0.94 to a high of 0.996. The correlation between shocks to returns

and shocks to the T-bill rate varies much more across regimes than in the dividend yield model,

ranging from a low of -0.47 during 1979-1982 to a high of 0.08 during 1926-34. These changes appear

not simply to reflect random sample variations since the standard deviations of the correlations are

mostly quite low. All states continue to be highly persistent with mean transition probability

estimates varying from 0.973 to 0.993, resulting in state durations between 40 and more than 160

months.

Turning finally to the meta distribution parameters for the T-bill rate model shown in Table 6,

once again the chief source of uncertainty is the slope coefficient of the interest rate in the return

equation. For example, b0(βr) has a mean of -2.8 and a standard deviation of 5.9, giving a very

long 95% confidence interval that ranges from -14.6 to 9.1. Compared with the model based on

the dividend yield, there is now also greater uncertainty about the correlation between shocks to

returns and shocks to the T-bill rate as indicated by the higher standard deviation of μρ and the
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wide 95% confidence interval from -0.45 to 0.24.

4. Asset Allocation under Structural Breaks

Investors are concerned with instability in the return model because this affects future asset pay-

offs and therefore may alter their optimal asset allocation. To study the economic importance of

structural breaks in the return model, we next consider the optimal asset allocation under a range

of alternative modeling assumptions for a buy-and-hold investor with a horizon of h periods who at

time T has power utility over terminal wealth, WT+h, and coefficient of relative risk aversion, γ:

u(WT+h) =
W 1−γ

T+h

1− γ
, γ > 0. (17)

Following Kandel and Stambaugh (1996) and Barberis (2000), we assume that the investor has

access to a risk-free asset whose single-period return is denoted rf,T+1, and a risky stock market

portfolio whose return, measured in excess of the (single-period) risk-free rate, is denoted rT+1. All

returns are continuously compounded. The risk-free rate is allowed to change every period.

4.1. The Asset Allocation Problem

Without loss of generality we set initial wealth at one, WT = 1, and let ω be the allocation to

stocks. Terminal wealth is then given by

WT+h = (1− ω) exp(
hX

τ=1

rf,T+τ ) + ω exp(
hX

τ=1

(rT+τ + rf,T+τ )). (18)

Subject to the no short-sale constraint 0 ≤ ω ≤ 0.99,12 the buy-and-hold investor solves the following
problem

max
ω

ET

Ã
((1− ω) exp(Rf,T+h) + ω exp(Rs,T+h))

1−γ

1− γ

!
, (19)

where the cumulative h−period returns on stocks and the corresponding return from rolling over

one-period T-bills are given by Rs,T+h =
Ph

τ=1(rT+τ + rf,T+τ ) and Rf,T+h =
Ph

τ=1 rf,T+τ and ET

is the conditional expectation given information at time T , ZT . How this expectation is computed

reflects the modeling assumptions made by the investor.

4.2. No Breaks, no Parameter Uncertainty

First consider the asset allocation problem for an investor who ignores parameter estimation uncer-

tainty and breaks. Once the predictor variables have been specified, the VAR parametersΘ = (B,Σ)

can be estimated and the model can be iterated forward conditional on these parameter estimates.

12We use an upper bound on stock holdings of ω = 0.99 in order to ensure that the expected utility is bounded

which might otherwise be a problem, see (Geweke (2001)), Kandel and Stambaugh (1996) and Barberis (2000).
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Collecting cumulative stock and T-bill returns in the vector RT+h = (Rs,T+h, Rf,T+h), we can gen-

erate a distribution for future asset returns, p(RT+h|bΘ, ST+h = 1,ZT ) where ST+h = 1 shows that

past and future breaks are ignored. The investor therefore solves the problem

max
ω

Z
u(WT+h)p(RT+h|bΘ, ST+h = 1,ZT )dRT+h. (20)

Here we used that, from (18), the only part of WT+h that is uncertain is RT+h. This of course

ignores that Θ is not known precisely but typically is estimated with considerable uncertainty.13

4.3. No Breaks with Parameter Uncertainty

Next, consider the decision of an investor who accounts for parameter estimation uncertainty but

ignores both past and future breaks, i.e., assumes that ST+h = 1. In the absence of breaks the

posterior distribution π(Θ|ST+h = 1,ZT ) summarizes the uncertainty about the parameters given

the historical data sample.14 Integrating over this distribution leads to the predictive distribution

of returns conditioned only on the observed sample (and not on any fixed Θ) and the assumption

of no breaks prior to time T + h:

p(RT+h|ST+h = 1,ZT ) =

Z
p(RT+h|Θ, ST+h = 1,ZT )π(Θ|ST+h = 1,ZT )dΘ. (21)

This investor therefore solves the asset allocation problem

max
ω

Z
u(WT+h)p(RT+h|ST+h = 1,ZT )dRT+h. (22)

Comparing stock holdings in (20) and (22) gives a measure of the economic importance of parameter

estimation uncertainty. Both solutions ignore model instability, however.

4.4. Past and Future Breaks

Both past and future breaks matter for the investor’s estimates of the future return distribution.

The predictive density of returns conditional on K + 1 regimes having emerged up to time T can

be computed by integrating over the parameters, π (Θ,H, p|ST = K + 1,ZT ) :

p(RT+h|ST = K + 1,ZT )

=

Z Z Z
p (RT+h|Θ,H, p, ST = K + 1,ZT )π (Θ,H, p|ST = K + 1,ZT ) dΘdHdp. (23)

Appendix 2 explains the steps involved in obtaining draws from the predictive distribution of cu-

mulative returns that account for possible future breaks. An investor who considers the uncertainty

about out-of-sample breaks but conditions on K historical (in-sample) breaks therefore solves

max
ω

Z
u(WT+h)p (RT+h|ST = K + 1,ZT ) dRT+h. (24)

13To be more precise, we could condition also on MKx i.e. the return prediction model based on the predictor

variable x and conditional on K historical breaks, with K = 0 here. The importance of Mkx will become clear when

we integrate out uncertainty about the number of breaks and the predictor variables.
14Throughout the paper, π(·|ZT ) refers to posterior distributions conditioned on information contained in ZT .
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This expression does not restrict the number of future breaks, nor does it take the parameters as

known. It does, however, take the number of historical breaks as fixed and also ignores uncertainty

about the forecasting model itself. We next relax these assumptions.

4.5. Uncertainty about the number of historical breaks

The predictive densities computed so far have conditioned on the number of in-sample breaks (K)

by setting ST = K+1. This is of course a simplification since the true number of historical breaks is

unknown. To deal with this, we adopt a simple Bayesian model averaging method that computes the

predictive density of returns as a weighted average of the predictive densities conditional on different

numbers of historical (in-sample) breaks. For each choice of number of breaks, K, and predictor

variable, x, we get a model MKx with predictive density pKx(RT+h|ST = K + 1,X = x,ZT ).

Integrating over the number of breaks (but keeping the choice of predictor variables, x, fixed), the

predictive density under the Bayesian model average is

px(RT+h|ZT ) =
K̄X

K=0

pKx(RT+h|ST = K + 1,X = x,ZT )p(MKx |ZT ), (25)

where K̄ is an upper limit on the number of in-sample breaks. The weights used in the average are

proportional to the posterior probability of model MKx given by the product of the prior for model

MKx , p (MKx), and the marginal likelihood, f (ZT |MKx),

p (MKx | ZT ) ∝ f (ZT |MKx) p (MKx) . (26)

4.6. Model uncertainty

In addition to not knowing the parameters of a given return forecasting model and not knowing

the number of historical breaks, investors are unlikely to know the true identity of the predictor

variables. This point has been emphasized by Pesaran and Timmermann (1995) and, more recently

in a Bayesian setting, investigated by Avramov (2002) and Cremers (2002). The analysis of Avramov

and Cremers treats model uncertainty by considering all possible combinations of a large range of

predictor variables.

We follow this analysis by integrating across the two return prediction models based on the

dividend yield and the short interest rate. This is simply an illustration of how to handle model

uncertainty and our analysis could of course be extended to a much larger set of variables. However,

to keep computations feasible, we simply combine the return models based on these two predictor

variables, in each case accounting for uncertainty about the number of past and future breaks:

p(RT+h|ZT ) =
XX
x=1

K̄X
K=0

pKx (RT+h|ST = K + 1,MKx ,ZT )p(MKx |ZT ). (27)

Here p(MKx |ZT ) is the posterior probability of the model with x as predictor variable(s) and K

breaks, andX is the number of different combinations of predictor variables used to forecast returns.
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5. Empirical Asset Allocation Results

We next use the methods from Section 4 to assess empirically the effect of structural breaks on

a buy-and-hold investor’s optimal asset allocation. We use the Gibbs sampler to evaluate the

predictive distribution of returns under breaks. Details of the numerical procedure used to compute

the distributions are provided in the appendices.

Before moving to the results, it is worth recalling two important effects for asset allocation under

return predictability from variables such as the dividend yield. First, the dividend yield identifies a

mean-reverting component in stock returns which means that the risk of stock returns grows more

slowly than in the absence of predictability, creating a hedging demand for stocks, see Campbell,

Chan, and Viceira (2003). Negative shocks to stock prices are bad news in the period when they

occur but tend to increase subsequent values of the dividend yield and thus become associated

with higher future expected stock returns. Second, parameter estimation uncertainty reduces a risk

averse investor’s demand for stocks. For example, if new information leads the investor to revise

downward his belief about mean stock returns shortly after the investment decision is made, this

will affect returns along the entire investment horizon similar to a permanent negative dividend

shock.

In our breakpoint model there is an interesting additional interaction between parameter estima-

tion uncertainty and structural breaks. In the absence of breaks, parameter estimation uncertainty

has a greater impact on returns in the sense that parameter values are fixed and not subject to

change. The presence of breaks means that bad draws of the parameters of the return model will

eventually cease to affect returns as they get replaced by new parameter values following future

breaks. On the other hand, breaks to the parameters tend to lower the precision of current parame-

ter estimates and thus increase the importance of parameter estimation uncertainty. Which effect

dominates depends on the extent of the variability in the parameter values across regimes as well

as on the average duration of the regimes.

Our analysis focuses on in-sample predictability of stock returns. An alternative way to evaluate

the importance of return predictability is to conduct a recursive out-of-sample analysis as is done

by Dangl and Halling (2008), Johannes, Korteweg, and Polson (2009) and Wachter and Warusaw-

itharana (2009). In fact, our finding of large breaks to the return prediction model is likely to be

an important reason for the widely-reported poor out-of-sample forecasting performance of return

prediction models. For example, Lettau and van Nieuwerburgh (2008) find that a prediction model

that allows for breaks to the steady state of the dividend yield produces better in-sample forecasts,

although they also report that it is difficult to exploit such breaks in real time due to the uncertainty

surrounding the magnitude of the shift in the mean dividend yield.

5.1. Results Based on the Dividend Yield

Figures 3 and 4 plot the allocation to stocks under the three scenarios discussed in Section 4, namely

(i) no breaks, no parameter uncertainty; (ii) no breaks with parameter uncertainty; (iii) past and

future breaks. The first two scenarios ignore breaks and so use full-sample parameter estimates. We
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compute the optimal weight on stocks under two values for the coefficient of relative risk aversion,

namely γ = 5 and γ = 10. To be consistent with the results for the T-bill rate model reported in

Table 5, the asset allocation results assume that the short rate follows a persistent process that is

subject to breaks.

Figure 3 starts the dividend yield off from its value at the end of sample (2005:12) which is 1.8%.

Under the models that assume no breaks, and setting γ = 5, the weight on stocks rises from a level

near 10% at short investment horizons to 30% at the five-year horizon. The assumed absence of a

break means that a very long data sample (1926-2005) is available for parameter estimation. This

reduces parameter estimation uncertainty and leads to an increasing weight on stocks, the longer

the investment horizon. This interpretation is confirmed by the finding that stock holdings are very

similar irrespective of whether parameter estimation uncertainty is accounted for.

Allowing for past and future breaks, the weight on stocks starts out at 70% at the 1-month

horizon and declines to a level below 10% at the five-year horizon. Parameter instability clearly

dominates the increased demand for stocks induced by return predictability from the dividend yield.

When risk aversion is increased to γ = 10, the weight on stocks declines uniformly to levels close

to half their values for γ = 5. The resulting stock allocations may seem low but are also affected by

the assumed initial value of the dividend yield which, at 1.8%, is close to its historical minimum.

To demonstrate this point, Figure 4 shows the allocation to stocks when the initial value of

the dividend yield is set at its sample mean of 4.1%. Comparing Figures 3 and 4, the level of

the optimal stock holding appears to be quite sensitive to the initial value of the dividend yield.

The allocation to stocks under the no-break models now starts close to 40% at short investment

horizons and increases to nearly 60% at the five-year horizon. Stock holdings under the model

that accounts for breaks start just below 100% at the 1-month horizon but rapidly decline as the

investment horizon is expanded to reach a level close to 10% at the five-year horizon. Stock holdings

are reduced considerably if γ is raised from five to ten, but the qualitative findings remain the same.

These findings suggest that the allocation to stocks is generally increasing in the horizon if breaks

in the return prediction model based on the dividend yield are ignored. If past and future breaks

are considered, we generally see a strongly declining allocation to stocks, the longer the investment

horizon.

Parameter instability in our model has a much larger effect on a buy-and-hold investor’s optimal

asset allocation than parameter estimation uncertainty. This can be seen by comparing the full

sample (no break) plots in Figures 3 and 4 with and without estimation error. In both cases these

are very similar. This is to be expected since investors have access to 80 years of data.

This conclusion is related to the analysis by Pastor and Stambaugh (2009) who find that the

variance of stock returns can increase more than in proportion with the forecast horizon due to a

combination of uncertainty about current and future expected returns and estimation risk. We also

find that the per-period variance of stock returns increases with the horizon in the dividend-yield

model. A closely related property is that, in the standard model with no return predictability,

the Sharpe ratio divided by the square root of the horizon should be constant. Introducing return

predictability from the dividend yield, but ignoring breaks, means that the Sharpe ratio becomes
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higher, the longer the investment horizon. For the no-break dividend yield model, we find that the

mean Sharpe ratio is nine percent higher at the 36 month horizon and 17 percent higher at the

60-month horizon, compared with the mean 12-month Sharpe ratio. Conversely, allowing for breaks

to the parameters of this model, we find that the mean of the 36-month and 60-month Sharpe ratios

are ten percent and 20 percent lower, respectively, than the mean of the 12-month Sharpe ratio.

These numbers help explain why long-run investors find it less attractive to hold stocks under the

model that allows for breaks.

5.2. Results based on the Short Interest Rate

Optimal stock holdings under the return prediction model based on the T-bill rate, set at its value

at the end of the sample of 3.8%, are shown in Figure 5. When γ = 5, the allocation to stocks

is flat at 40% under the no-break model irrespective of whether parameter estimation uncertainty

is considered. To see why, note that while shocks to the dividend yield and stock returns are

strongly negatively correlated and thus give rise to a hedging demand for stocks that grows with the

investment horizon, shocks to the short rate and stock returns are−on average−largely uncorrelated,
see Table 5. This means that the long-run risk of stocks is perceived to be higher under the T-bill

rate model and so helps explain the absence of an increase in the stock allocation, the longer the

investment horizon. Raising the risk aversion from γ = 5 to γ = 10, the allocation to stocks is

reduced to roughly half its previous level.

When past and future breaks are considered, the allocation to stocks declines from a level near

70% at short horizons to only 10% at the five-year horizon. Thus, we continue to find that the

level and slope of stock holdings as a function of the investment horizon are highly sensitive to

assumptions about model stability.

5.3. Uncertainty about the number of historical breaks

We next follow the analysis in Section 4 and integrate out uncertainty about the number of historical

(in-sample) breaks. The effect of using this approach is illustrated in Figure 6. This figure compares

plots of optimal stock holdings under a forecasting model that assumes eight historical breaks for

the dividend yield model (or five breaks for the T-bill rate model) against holdings computed under

Bayesian Model Averaging which considers all the models displayed in Table 2 with identical prior

weights on each of these models. For both predictor variables the allocations calculated under the

models with the highest posterior probabilities versus those calculated under the model averaging

approach are virtually identical. This is to be expected given the very high posterior probability

assigned to the top models shown in Table 2.

5.4. Model Uncertainty

Figure 6 also shows the effect of accounting for model uncertainty in a simple experiment that

combines the return forecasting models listed in Table 2 and includes either the dividend yield or
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the T-bill rate as a predictor variable, weighting the models according to equation (27). In total,

predictive densities across 20 different models are thus considered.

Optimal stock holdings most resemble the allocation under the five-break forecasting model

based on the T-bill rate. This happens because this model achieves a better fit than the best model

based on the dividend yield and hence gets a greater weight in the forecast combination. If we

considered a larger universe−in particular models with more than one predictor variable−it is less
likely that any particular model would dominate in the way we find here.

This analysis is only meant to illustrate how our approach can be extended to account for model

uncertainty. In reality, model uncertainty is far greater than shown here due to the typically large

dimension of the set of possible predictor variables. For example, Avramov (2002) considers 214

different models.

6. Sensitivity Analysis and Extensions

6.1. Robustness to Priors

We next investigate the sensitivity of our empirical results with regard to the assumed priors.

The greatest sensitivity of our results is related to the specification of V β. This matrix controls

variations in the regression coefficients across regimes. If we make V β larger than the value assumed

in the empirical analysis, the posterior distribution of the parameter estimates within each regime

gets more dispersed, whereas the location of the breaks is less affected. Conversely, for smaller

values of V β, the parameter estimates in the various regimes become more similar than suggested

by the empirical results since this reduces the variation in the posterior mean of the parameter

estimates across regimes. The choice of V β in the empirical analysis respects the variation in the

original coefficient estimates and allows us to have reasonable meta distributions for the regression

coefficients that can capture the values taken by the coefficients in the various regimes identified by

our model.

Imposing the constraint that the predictor variable, xt, is stationary (0 < βx < 1) does not have

much effect on the results. An additional parameter constraint which requires the unconditional

mean excess stock return within each regime to fall between zero and 1% per month (0 ≤ μr+
βrμx
1−βx

≤
0.01) also does not affect the results in any major way.

Following the analysis in Stambaugh (1999), we consider using an informative prior that centers

the correlation between innovations in the return and the dividend yield equations, λj,1,2 on -0.9,

with μμ,1,2 = −0.9, τ21,2 = 0.00001, aρ,1,2 = 1000 and bρ,1,2 = 100. This again makes little difference

to the results, although at short horizons of up to six months, the allocation to stocks is reduced

slightly compared to the case with uninformative priors on this parameter.

Our benchmark analysis uses an informative prior for the autoregressive parameter that is

centered at 0.9. We have also analyzed a model with an uninformative prior for this coefficient and

find that this has little effect on the posterior parameter estimates and asset allocation results.

We finally estimate a model that imposes identical transition probability parameters across

states by setting pk,k = p for all k. Such a restriction is natural to consider since we effectively
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only have one observation for each pk,k. Notice that this restriction changes the structure of the

prior for the transition probability matrix, P , since we no longer have a hierarchical prior on a, b.

This modification has little effect on the results. For example, for the dividend yield model with

eight breaks, two of the estimated break dates (1940 and 1958) change a little (to 1943 and 1954,

respectively) but the estimated slope coefficients of the dividend yield in the return equation are

very similar to the baseline case in Table 3 and asset allocations are basically unchanged. Similar

results prevail for the return prediction model based on the T-bill rate, for which the parameter

estimates and break dates in a five-break model change very little when imposing that pk,k = p.

6.2. Time-varying Volatility of Returns

It is a well-known empirical fact that the volatility of stock returns varies over time. Ideally this

should be captured by a return forecasting model used for asset allocation. In fact, since our model

allows for breaks to the covariance matrix of returns, it is capable of accounting for heteroskedasticity

in returns insofar as this coincides with the identified regimes. This is an important consideration

since stock returns were clearly far more volatile during periods such as the Great Depression.

To see how the volatility of stock returns changes over time in our model, Figure 7 provides a

time-series plot of the standard deviation of the predictive density of returns. Since the standard

deviation of returns (and of the yield) is allowed to vary across regimes in the break model, volatility

follows a step function that tracks the various regimes. In fact, the mean value of the volatility

of returns varies significantly from close to 10% per month around the Great Depression to 3-4%

per month in the middle of the sample. This finding shows that the asset allocations we computed

earlier account not simply for shifts to the conditional equity premium but, equally importantly,

also for shifts to the volatility of stock returns.

6.3. Welfare Costs from Ignoring Breaks

To quantify the economic costs of ignoring breaks, we undertook the following exercise. For each of

the return prediction models we simulated returns under the assumption that the true data gener-

ating process corresponds to the breakpoint models reported in Tables 3-4 and 5-6, respectively. We

then computed the optimal asset allocation under the three different model specifications considered

earlier, i.e., (i) no breaks without parameter uncertainty; (ii) no breaks with parameter uncertainty;

and (iii) past and future breaks. This exercise thus addresses what loss an investor would occur

if the true return process experiences breaks, but the investor is forced to hold a portfolio that is

optimized under a model that ignores breaks.

Table 7 reports results in the form of annualized certainty equivalent returns, a common mea-

sure of performance that allows us to measure the economic loss from using a misspecified return

prediction model, in this case one that ignores breaks. Once again we compute results for risk

aversion coefficients of γ = 5 and γ = 10 and we set the values of the predictor variables close to

their sample means.

First consider the model based on the dividend yield. When γ = 5, the loss in certainty
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equivalent return is quite modest at horizons up to one year. However, the loss quickly grows as

the horizon expands. In fact, the models that ignore breaks generate negative certainty equivalent

returns at horizons of 30 months or longer, compared with a certainty equivalent return around 5%

for the model that accounts for breaks.

The finding that the cost of ignoring breaks increases with the investment horizon can be ex-

plained as follows. First, the probability of a break increases, the longer the investment horizon.

Second, the difference between the allocation to stocks under the no-break and break models in-

creases as the horizon grows, with the no-break models allocating far too much to stocks. As a

result, under the assumption that breaks do in fact affect the return generating process, the no-

break models lead investors to take on too much risk and result in far lower certainty equivalent

returns. This finding is particularly strong under the dividend yield prediction model since this

assumes strong mean reversion in returns and so leads investors to underestimate the long-run risks

from holding stocks. Accounting for parameter uncertainty helps investors a bit, although it only

reduces the loss in certainty equivalent returns by around 2% compared to the case where parameter

uncertainty is ignored. Notice also that losses from ignoring breaks are much smaller when investors

are more risk averse (γ = 10) since this leads them to naturally dampen their allocation to stocks

and, and as a consequence, their over-exposure to stocks is greatly reduced.

Turning to the return prediction model based on the T-bill rate, Table 7 shows much lower losses

in certainty equivalent returns. Losses are now only a few basis points for investment horizons shorter

than one year. Although losses due to ignoring breaks grow as the investment horizon expands,

they remain modest at just above one percent per annum for γ = 5 even at the five-year horizon.

Once again losses are lower when the risk aversion is increased from γ = 5 go γ = 10.

7. Conclusion

This paper provided an analysis of the stability of return prediction models and the asset allo-

cation implication of breaks to model parameters. Our analysis accounts for several sources of

uncertainty, namely (i) parameter uncertainty; (ii) model uncertainty; (iii) uncertainty about the

number, location and size of historical breaks to model parameters; and (iv) uncertainty about

future (out-of-sample) breaks.

Our empirical results suggest that the parameters of standard forecasting models are highly

unstable and subject to multiple breaks, many of which coincide with important historical events.

Such breaks compound the effect of parameter estimation uncertainty. Moreover, we find that

the possibility of past and future breaks has a large impact on investors’ optimal asset allocation.

Overall, we conclude that instabilities in standard return prediction models can imply long-run

risk estimates that are far greater than usually perceived and hence make stocks less attractive to

long-run investors.
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Technical Appendices

Appendix 1. Gibbs sampler for the return prediction model with multiple
breaks

This appendix extends results in Pesaran, Pettenuzzo, and Timmermann (2006) to cover multi-

variate dynamic models. We are interested in drawing from the posterior distribution π (Θ,H, p,ST | ZT ),

where

Θ =
¡
vec(B)1, ψ1,Λ1, ..., vec(B)K+1, ψK+1,ΛK+1

¢
are the K + 1 sets of regime-specific parameters (regression coefficients, error term variances and

correlations) and

H =
¡
b0, V0, v0,1, d0,1, ..., v0,m, d0,m, μρ,1,2, σ

2
ρ,1,2, ..., μρ,m−1,m, σ

2
ρ,m−1,m, a, b

¢
are the hyperparameters of the meta distribution that characterizes how much the parameters of the

return model are allowed to vary across regimes. We also use the notation ST = (s1, ..., sT ) for the
collection of values of the latent state variable and ZT = (z1, ..., zT )

0 for the time-series of returns

and predictor variables. Finally, p= (p1,1, p2,2,..., pK+1,K+1)0 summarizes the unknown parameters

of the transition probability matrix in (5).

The Gibbs sampler applied to our set up works as follows: First, states, ST , are simulated con-
ditional on the data, ZT , the parameters, Θ, the meta hyperparameters, H, and the elements of the

transition probability matrix, P ; next, the parameters and hyperparameters of the meta distribu-

tions are simulated conditional on the data and ST . Specifically, the Gibbs sampler is implemented
by simulating the following set of conditional distributions: π (ST |Θ,H, p,ZT ), π (Θ,H| p,ST ,ZT ),

π (p| ST ) .15

Simulation of the states ST requires ‘forward’ and ‘backward’ passes through the data. Define
St = (s1, ..., st) and St+1 = (st+1, ..., sT ) as the state history up to time t and from time t+1 to T ,

respectively. We partition the joint density of the states as follows:

p(sT−1| sT ,Θ,H, p,ZT )× · · · × p(st| St+1,Θ,H, p,ZT )× · · · × p(s1| S2,Θ,H, p,ZT ). (28)

Chib (1996) shows that the generic element of (28) can be decomposed as follows

p(st| St+1,Θ,H, p,ZT ) ∝ p(st|Θ,H, p,Zt)p(st+1| st, p), (29)

where the normalizing constant is easily obtained since st takes only two values conditional on the

value taken by st+1. The last term in (29) is simply the transition probability from the Markov

chain. The first term can be computed by a recursive calculation (the forward pass through the

data) where, for a given p(st−1|Θ,H, p,Zt−1), we obtain p(st|Θ,H, p,Zt) and p(st+1|Θ,H, p,Zt+1),

and so on until p(sT |Θ,H, p,ZT ). Suppose p(st−1|Θ,H, p,Zt−1) is available. From Chib (1998),

p(st = k| Zt,Θ,H, p) =
p(st = k| Zt−1,Θ,H, p)× f (zt| vec(B)k,Σk,H,Zt−1)Pk
l=k−1 p(st = l|Θ,H, p,Zt−1)× f (zt| vec(B)l,Σl,H,Zt−1)

,

15We use the identity π (Θ,H, p| ST ,ZT ) = π (Θ,H| p,ST ,ZT )π (p| ST ) and note that under our assumptions,
π (p|Θ, H,ST ,ZT ) = π (p| ST ).
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for k = 1, 2, ...,K + 1, and where pl,k is the Markov transition probability. In addition,

p(st = k|Θ,H, p,Zt−1) =
kX

l=k−1
pl,k × p(st−1 = l|Θ,H, p,Zt−1).

For a given set of simulated states, ST , the data is partitioned into K + 1 groups. Let Zk =³
z0τk−1+1, ..., z

0
τk

´0
and Xk =

³
z0τk−1 , ..., z

0
τk−1

´0
be the values of the dependent and independent

variables within the kth regime. To obtain the conditional distributions for the regression parameters

and hyperparameters, note that the conditional distributions of vec(B)k are independent across

regimes with16

vec(B)k|Θ−vec(B)k ,H, p,ST ,ZT ∼ N
³
vec(B)k, V k

´
,

where

V k =
¡
X 0
kΣ
−1
k Xk + V −10

¢−1
,

vec(B)k = V k

¡
X 0
kΣ
−1
k Zk + V −10 b0

¢
.

The posterior densities of the location and scale parameters of the meta distribution for the

regression parameter, b0 and V0, take the form

b0|Θ,H−b0 , p,ST ,ZT ∼ N
¡
μβ,Σβ

¢
,

V −10
¯̄
Θ,H−V0 , p,ST ,ZT ∼ W

³
V
−1
β , vβ

´
,

where

Σβ =
³
(K + 1)V −10 +Σ−1β

´−1
,

μβ = Σβ

⎛⎝V −10

K+1X
j=1

vec(B)j +Σ
−1
β μ

β

⎞⎠ ,

and

vβ = vβ + (K + 1) ,

V β =
K+1X
j=1

(vec(B)j − b0) (vec(B)j − b0)
0 + V β.

Moving to the posterior for the precision parameters within each regime k and for each equation

i, let Ξ = (Zk −XkBk)
0 (Zk −XkBk) with Ξi,j being its i-th row and j-th column element. Note

that

s−2k,i

¯̄̄
Θ−Sk ,H, p,ST ,ZT ∼ G

µ
v0,i + nj

2
,
v0,id0,i + Ξi,i

2

¶
,

where nk is the number of observations assigned to regime k.

16Using standard set notation we define A−b as the complementary set of b in A, i.e. A−b = {x ∈ A : x 6= b}.
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Location and scale parameters for the error term precision of each equation are then updated

as follows:17

v0,i|Θ,H−v0,i , p,ST ,ZT ∝
K+1Y
k=1

G
³
s−2k,i

¯̄̄
v0,i, d0,i

´
exp

³
−ρ

0,i

´
, (30)

d0,i|Θ,H−d0,i , p,ST ,ZT ∼ G

Ã
v0,i (K + 1) + c0,i,

K+1X
k=1

s−2k,i + d0,i

!
.

The full conditional densities for μρ,i,c and σ
2
ρ,i,c are similar to conjugate densities with an additional

factor due to the constraint requiring Λk to be positive definite (we write Rm to identify the space

of all correlation matrices of dimension m):

f
³
μρ,i,c

¯̄
Θ,H−μρ,i,c , p,ST ,ZT

´
∝

K+1Y
k=1

exp
n
−
¡
λk,i,c − μρ,i,c

¢2
/
¡
2σ2ρ,i,c

¢o
(31)

× exp
½
−
³
μρ,i,c − μ

μ,i,c

´2
/
¡
2τ2i,c

¢¾
I {Λk ∈ Rm} ,

f
³
σ2ρ,i,c

¯̄
Θ,H−σ2ρ,i,c , p,ST ,ZT

´
∝

K+1Y
k=1

exp
n
−
¡
λk,i,c − μρ,i,c

¢2
/
¡
2σ2ρ,i,c

¢o
(32)

σ
2(1−aρ,i,c)
ρ,i,c exp

¡
−bρ,i,c/σ2ρ,i,c

¢
I {Λk ∈ Rm} .

The posterior distributions of the correlation coefficients within each regime, λk,i,c, and of the

hyperparameters μρ,i,c and σ2ρ,i,c are non standard so sampling is accomplished using a Griddy

Gibbs sampling step inside the main Gibbs sampling algorithm.

Finally, pk,k is simulated from the conditional beta posterior

pk,k| ST ∼ Beta(a+ lk, b+ 1),

where lk = τk−τk−1−1 is the duration of regime k. The posterior distribution for the hyperparame-
ters a and b in 12 and 13 is not conjugate so sampling is accomplished using a Metropolis-Hastings

step.

Appendix 2. Algorithm for generating draws of returns under breaks
This appendix describes the steps used to obtain draws from the predictive distribution of

returns that account for uncertainty about past and future breaks.

For each draw j from the Gibbs sampler (j = 1, ..., J),

1. First, obtain a draw for pjK+1,K+1 from its posterior distribution. This is achieved by com-

bining the information from the last regime with the prior information for pk,k in (6)

pjK+1,K+1

¯̄̄
SjT ∼ Beta(a+ ljK+1, b+ 1),

17See George, Makov, and Smith (1993), pp. 154-155. Drawing v0,i from (30) is complicated since we cannot make

use of standard distributions so we use an adaptive rejection sampling step in the Gibbs sampling algorithm.
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where ljK+1 = T−τ jK−1 is the number of observations in regime K+1 in round j of the Gibbs
sampler. Hence the probability that at time T + s (1 ≤ s ≤ h) the jth draw of the Gibbs

sampler remains in regime K + 1, conditional on SjT+s−1, is p
j
K+1,K+1, while the probability

of moving to a new regime is 1− pjK+1,K+1.

Next, for each period T + s (1 ≤ s ≤ h) proceed as follows:

2. Draw a realization, U j
T+s, from a uniform distribution, U j

T+s ∼ U [0, 1]. If U j
T+s ≤ pjK+1,K+1,

the sampler remains in the current regime; if U j
T+s > pjK+1,K+1 the sampler moves to the next

regime.

2a. If U j
T+s ≤ pjK+1,K+1, stay in the current regime and draw returns from

rjT+s ∼ p
³
rT+s|Θj

K+1,H
j , pj , Sj

T+s = K + 1,ZT

´
.

Then go back to step 2 after incrementing the time indicator, s, by one.

2b. If U j
T+s > pjK+1,K+1, start by drawing a new set of hyperparameters Hj from their meta

distributions in equations (7)-(11). Next, draw Bj
K+2 and Σ

j
K+2 from π

³
Bj
K+2

¯̄̄
Hj ,ZT

´
and

π
³
ΣjK+2

¯̄̄
Hj ,ZT

´
, respectively. Finally, draw returns from the posterior predictive density,

rjT+s ∼ p
³
rT+s|Θj

K+2,H
j , Sj

T+s = K + 2,ZT

´
,

3. If U j
T+s > pjK+1,K+1, so a break occurred, draw aj and bj from their conditional posterior

distributions in (12) and (13). Generate a draw for pjK+2,K+2 using the prior distribution for

pk,k in (6) and aj and bj ,18

pjK+2,K+2

¯̄̄
aj , bj ∼ Beta(aj , bj).

Then go back to step 2 of the algorithm after incrementing the time indicator, s, by one and

increasing the regime indicator, currently set to its last in-sample value, K + 1, by one.

4. When s = h, add returns from periods T + 1, ..., T + h to get the cumulated return over the

investment horizon. Repeating across j = 1, .., J we obtain p(RT+h|ST = K + 1,ZT ).

18Since we do not have any information about the length of regime K + 2 from the estimation sample, we rely on

prior information to get an estimate for pjK+2,K+2.
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Figure 3: Optimal Asset Allocation as a function of the investment horizon for a buy-and-hold
investor with power utility over terminal wealth, U(WT+h) = 1

1−γW
1−γ
T+h, where h is the forecast

horizon and γ is the coefficient of relative risk aversion. The calculations use the dividend yield as a
predictor variable. The panels show percentage allocations to stocks plotted against the investment
horizon measured in months under the assumption that the dividend yield is set at its value at the
end of the sample, i.e., 1.8%. The upward sloping curves track stock allocations under no breaks,
while the downward sloping curves allow for past and future breaks.
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Figure 4: Optimal Asset Allocation as a function of the investment horizon for a buy-and-hold
investor with power utility over terminal wealth, U(WT+h) = 1

1−γW
1−γ
T+h, where h is the forecast

horizon and γ is the coefficient of relative risk aversion. The calculations use the dividend yield as a
predictor variable. The panels show percentage allocations to stocks plotted against the investment
horizon measured in months under the assumption that the dividend yield is set at its mean value,
i.e., 4.1%. The upward sloping curves track stock allocations under no breaks, while the downward
sloping curves allow for past and future breaks.
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Figure 5: Optimal Asset Allocation as a function of the investment horizon for a buy-and-hold
investor with power utility over terminal wealth, U(WT+h) = 1

1−γW
1−γ
T+h, where h is the forecast

horizon and γ is the coefficient of relative risk aversion. The calculations use the T-bill rate as a
predictor variable. The panels show percentage allocations to stocks plotted against the investment
horizon measured in months under the assumption that the T-bill rate is set at its value at the end
of the sample, i.e., 3.8% per annum (0.03% per month). Flat curves track stock allocations under
no breaks, while the downward sloping curves allow for past and future breaks.
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Figure 6: Optimal asset allocation computed under Bayesian model averaging, considering the
dividend yield specification with up to 10 breaks (BMA over dividend yield modes), the T-bill rate
specification with up to 8 breaks (BMA over treasury bill models) and the combined set of all
dividend yield and T-bill rate return prediction models.
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Figure 7: Standard deviations of the predictive distribution of stock returns (in decimals per month)
when the predictor variable is the dividend yield (top panel) or the T-bill rate (bottom panel) under
models with eight and five breaks, respectively.
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Statistic Excess returns Dividend yield Treasury bill
Mean 0.0050 0.0408 0.0030
St. Deviation 0.0558 0.0170 0.0024
Kurtosis 7.9662 4.1017 0.9237
Skewness -0.3788 1.1463 0.9317
Minimum -0.3391 0.0108 8.3E-06
Maximum 0.3478 0.1536 0.0126

Table 1: Summary statistics for the excess return, dividend yield and T-bill rate data used through-
out the paper. Mean, standard deviation, coefficient of kurtosis, coefficient of skewness, minimum
and maximum values are reported for each series.
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I. Excess Returns - Dividend Yield

Number of Joint Approx. Posterior Break locations
breaks log lik. marg. lik. probability

0 6188.4 6164.4 0.00000
1 6866.7 6739.7 0.00000 Feb-43
2 6892.1 6737.6 0.00000 May-42 Jun-45
3 7223.9 7041.9 0.00000 Jun-40 May-54 Mar-95
4 7321.4 7112.0 0.00000 Jun-40 May-58 May-74 Mar-95
5 7403.8 7166.8 0.00000 Jun-40 May-58 May-74 Nov-85 Mar-95
6 7434.9 7170.5 0.00008 May-33 Feb-43 May-58 May-74 Nov-85

Mar-95
7 7455.6 7163.7 0.00000 May-33 Jun-40 Jul-51 May-58 May-74

Nov-85 Mar-95
8 7499.3 7180.0 0.99984 May-33 Jun-40 Jul-51 May-58 May-74

Feb-86 Nov-88 Jul-96
9 7516.6 7169.8 0.00004 May-33 Jul-40 Feb-43 Jul-58 Aug-66

May-74 Feb-86 Nov-88 Jul-96
10 7544.3 7170.0 0.00005 May-33 Jul-40 Apr-43 Jul-51 May-58

May-74 Nov-82 Feb-86 Nov-88 Jul-96

II. Excess Returns - Treasury Bill Rate

Number of Joint Approx. Posterior Break locations
breaks log lik. marg. lik. probability

0 7858.2 7834.1 0.00000
1 8046.6 7919.6 0.00000 Jun-69
2 8306.2 8151.7 0.00000 Apr-34 Dec-52
3 8337.2 8155.2 0.00000 Jun-40 Jun-69 Jul-85
4 8550.8 8341.4 0.00029 Apr-34 Dec-51 Aug-79 Oct-82
5 8586.5 8349.5 0.99971 Apr-34 Dec-51 Jun-69 Aug-79 Oct-82
6 8598.2 8333.8 0.00000 Apr-34 Dec-51 Jun-69 Aug-79 Nov-82

Jul-85
7 8620.9 8329.0 0.00000 Apr-34 Jul-47 Dec-51 Jun-69 Aug-79

Nov-82 Jul-85
8 8653.0 8333.7 0.00000 Apr-34 Jul-40 Dec-51 Nov-60 Jul-66

Aug-79 Nov-82 Jul-85

Table 2: Model comparison and selection of the number of breaks in the return forecasting models.
The table shows estimates of the joint log-likelihood for stock returns and the predictor variable (ei-
ther the dividend yield or the T-bill rate), approximate marginal likelihood values and approximate
posterior probabilities for models with different numbers of breaks along with the posterior modes
for the time of the break points. The top and bottom panels display results when the predictor
for the excess return is the lagged dividend yield (panel I) and the lagged T-Bill rate (panel II),
respectively.
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Regimes

Full sample 26-33 33-40 40-51 51-58 58-74 74-86 86-88 88-96 96-05

µr
mean -0.0033 0.0037 0.0052 -0.0289 -0.0236 -0.0355 -0.0284 -0.0291 -0.0263 -0.0377
s.d. 0.0046 0.0139 0.0162 0.0163 0.0208 0.0159 0.0147 0.0282 0.0176 0.0168

βr
mean 0.2018 -0.0153 0.0512 0.7042 0.8321 1.2070 0.6760 1.0804 1.1649 2.6278
s.d. 0.1039 0.2683 0.3289 0.3030 0.5281 0.5009 0.3112 0.8222 0.5895 1.0458

σr
mean 0.0558 0.1082 0.0806 0.0386 0.0378 0.0359 0.0455 0.0609 0.0308 0.0449
s.d. 0.0013 0.0084 0.0087 0.0026 0.0041 0.0019 0.0028 0.0090 0.0050 0.0031

µx × 100
mean 0.0830 0.2028 0.2063 0.1605 0.1889 0.1815 0.1903 0.1816 0.1382 0.0503
s.d. 0.0290 0.0818 0.0791 0.0637 0.0678 0.0545 0.0684 0.0711 0.0532 0.0265

βx
mean 0.9790 0.9567 0.9571 0.9722 0.9484 0.9429 0.9591 0.9416 0.9472 0.9663
s.d. 0.0066 0.0189 0.0185 0.0117 0.0172 0.0172 0.0146 0.0231 0.0191 0.0165

σx × 100
mean 0.3533 0.9016 0.4976 0.2305 0.1627 0.1208 0.2256 0.2114 0.0991 0.0717
s.d. 0.0082 0.0707 0.0476 0.0182 0.0180 0.0061 0.0136 0.0327 0.0188 0.0047

ρrx
mean -0.8807 -0.9359 -0.9399 -0.9290 -0.9529 -0.9732 -0.9734 -0.9324 -0.9666 -0.9547
s.d. 0.0074 0.0222 0.0207 0.0248 0.0217 0.0131 0.0131 0.0232 0.0160 0.0193

p
mean 0.9857 0.9866 0.9895 0.9802 0.9920 0.9895 0.9763 0.9837 —
s.d. 0.0110 0.0102 0.0081 0.0150 0.0061 0.0081 0.0189 0.0130 —

Table 3: Parameter estimates for the return (rt) forecasting model with eight break points, based on
the lagged dividend yield (xt−1) as a predictor variable: rt = µrk + βrkxt−1 + εrt, εrt ∼ N

(
0, σ2

rk

)
,

xt = µxk + βxkxt−1 + εxt, εxt ∼ N
(
0, σ2

xk

)
, Pr (st = k| st−1 = k) = pk,k, corr (εrt, εxt) = ρrxk ,

τk−1 + 1 ≤ t ≤ τk, k = 1, ..., 9.
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Hyperparameters of meta distributions

I Return equation
Mean parameters
mean s.d. 95% conf. interval

b0(µr) -0.0248 0.0791 -0.1780 0.1331
b0(βr) 0.9264 0.5009 0.0029 2.0354p
(V0(µr)) 0.2296 0.0545 0.1497 0.3621p
(V0(βr)) 1.1151 0.3246 0.6512 1.8838

II Dividend Yield equation
Mean parameters
mean s.d. 95% conf. interval

b0(µx)× 100 0.1673 0.0508 0.0761 0.2752
b0(βx) 0.9478 0.0309 0.8806 0.9953p

(V0(µx))× 100 0.0688 0.0232 0.0372 0.1256p
(V0(βx)) 0.1020 0.0234 0.0674 0.1577

Correlation parameters
mean s.d. 95% conf. interval

µρ -0.9377 0.0341 -0.9878 -0.8606

Transition probability parameters
mean s.d. 95% conf. interval

a0 34.7707 18.4461 9.7272 75.7877
b0 0.8126 0.3663 0.2995 1.7041

Table 4: Estimates of the parameters of the meta distribution that characterizes variation in the
parameters of the return model across different regimes. The estimates are from a model with
predictability of returns from the dividend yield and assume eight historical breaks. Within the
kth regime the model is: zt = B′kxt−1 + ut, where zt = (rt, xt)′ is the vector of stock returns and
the predictor variable, and vec(B)k ∼ N(b0, V0). ρk ∼ N(µρ, σ2

ρ) is the correlation between shocks
to the dividend yield and shocks to returns in the kth regime, while pk,k ∼ Beta(a0, b0) is the
probability of remaining in the kth regime.
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Regimes

Full sample 26-34 34-51 51-69 69-79 79-82 82-05

µr
mean 0.0081 0.0000 0.0065 0.0250 0.0166 0.0902 0.0042
s.d. 0.0030 0.0174 0.0052 0.0061 0.0169 0.0384 0.0066

βr
mean -1.0334 0.1414 3.2724 -7.0505 -3.6461 -9.3972 0.5025
s.d. 0.7537 7.0858 8.7202 2.4093 3.3379 3.9141 1.4710

σr
mean 0.0559 0.1083 0.0591 0.0339 0.0456 0.0470 0.0437
s.d. 0.0013 0.0078 0.0029 0.0017 0.0029 0.0057 0.0019

µx × 100
mean 0.0025 0.0047 0.0007 0.0045 0.0151 0.0484 0.0031
s.d. 0.0013 0.0033 0.0003 0.0022 0.0087 0.0319 0.0020

βx
mean 0.9922 0.9668 0.9962 0.9886 0.9746 0.9405 0.9902
s.d. 0.0034 0.0163 0.0034 0.0083 0.0176 0.0349 0.0048

σx × 100
mean 0.0295 0.0285 0.0038 0.0169 0.0328 0.1112 0.0181
s.d. 0.0007 0.0021 0.0002 0.0009 0.0023 0.0140 0.0008

ρrx
mean -0.0793 0.0746 0.0181 -0.0336 -0.4010 -0.4736 0.0131
s.d. 0.0321 0.0252 0.0269 0.0280 0.0267 0.0352 0.0239

p
mean 0.9866 0.9930 0.9929 0.9891 0.9732 —
s.d. 0.0109 0.0054 0.0059 0.0085 0.0225 —

Table 5: Parameter estimates for the return (rt) forecasting model with five break points, based
on the lagged T-bill rate (xt−1) as a predictor variable: rt = µrk + βrkxt−1 + εrt, εrt ∼ N

(
0, σ2

rk

)
,

xt = µxk + βxkxt−1 + εxt, εxt ∼ N
(
0, σ2

xk

)
, Pr (st = k| st−1 = k) = pk,k, corr (εrt, εxt) = ρrxk ,

τk−1 + 1 ≤ t ≤ τk, k = 1, ..., 9.
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Hyperparameters of meta distributions

I Return equation
Mean parameters
mean s.d. 95% conf. interval

b0(µr) 0.0252 0.0524 -0.0783 0.1292
b0(βr) -2.7676 5.8697 -14.6019 9.1074p
(V0(µr)) 0.1287 0.0361 0.0787 0.2198p
(V0(βr)) 13.6488 4.1496 8.3880 24.0129

II T-bill equation
Mean parameters
mean s.d. 95% conf. interval

b0(µx)× 100 0.0201 0.0155 0.0009 0.0592
b0(βx) 0.9497 0.0377 0.8571 0.9978p

(V0(µx))× 100 0.0434 0.0139 0.0257 0.0783p
(V0(βx)) 0.1239 0.0363 0.0764 0.2171

Correlation parameters
mean s.d. 95% conf. interval

µρ -0.1250 0.1714 -0.4541 0.2360

Transition probability parameters
mean s.d. 95% conf. interval

a0 26.8935 14.4843 6.4051 60.5744
b0 0.6732 0.3085 0.2348 1.3780

Table 6: Estimates of the parameters of the meta distribution that characterizes variation in the
parameters of the return model across different regimes. The estimates are from a model with
predictability of returns from the T-bill rate and assume five historical breaks. Within the kth
regime the model is: zt = B′kxt−1 + ut, where zt = (rt, xt)′ is the vector of stock returns and the
predictor variable, and vec(B)k ∼ N(b0, V0). ρk ∼ N(µρ, σ2

ρ) is the correlation between shocks to
the T-bill and shocks to returns in the kth regime, while pk,k ∼ Beta(a0, b0) is the probability of
remaining in the kth regime.
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Certainty Equivalent Return Estimates

I. Dividend yield return prediction model

No Breaks No Breaks Past & No Breaks No Breaks Past &
Horizon w/o Param. with Param. Future Horizon w/o Param. with Param. Future

Uncertainty Uncertainty Breaks Uncertainty Uncertainty Breaks

Yld=4.1%; γ = 5 Yld=4.1%; γ = 10
——————————————————————– ——————————————————————–

1 0.0907 0.0907 0.1226 1 0.0649 0.0649 0.0809
6 0.0712 0.0716 0.0724 6 0.0556 0.0556 0.0558
12 0.0462 0.0483 0.0628 12 0.0451 0.0451 0.0507
18 0.0239 0.0273 0.0591 18 0.0360 0.0360 0.0485
24 0.0004 0.0091 0.0568 24 0.0254 0.0283 0.0472
30 -0.0105 -0.0058 0.0553 30 0.0222 0.0252 0.0462
36 -0.0225 -0.0088 0.0542 36 0.0174 0.0204 0.0455
42 -0.0275 -0.0185 0.0533 42 0.0136 0.0193 0.0448
48 -0.0350 -0.0178 0.0527 48 0.0108 0.0164 0.0443
54 -0.0459 -0.0245 0.0522 54 0.0085 0.0138 0.0437
60 -0.0468 -0.0264 0.0515 60 0.0063 0.0138 0.0430

II. T-billl rate return prediction model

No Breaks No Breaks Past & No Breaks No Breaks Past &
Horizon w/o Param. with Param. Future Horizon w/o Param. with Param. Future

Uncertainty Uncertainty Breaks Uncertainty Uncertainty Breaks

Tbi=3.8%; γ = 5 Tbi=3.8%; γ = 10
——————————————————————– ——————————————————————–

1 0.0646 0.0656 0.0696 1 0.0516 0.0523 0.0541
6 0.0622 0.0624 0.0630 6 0.0506 0.0506 0.0509
12 0.0571 0.0574 0.0577 12 0.0480 0.0482 0.0482
18 0.0539 0.0539 0.0561 18 0.0463 0.0463 0.0473
24 0.0505 0.0512 0.0547 24 0.0445 0.0451 0.0465
30 0.0478 0.0486 0.0539 30 0.0430 0.0437 0.0458
36 0.0458 0.0467 0.0534 36 0.0417 0.0425 0.0454
42 0.0420 0.0443 0.0525 42 0.0401 0.0401 0.0446
48 0.0422 0.0434 0.0524 48 0.0382 0.0392 0.0444
54 0.0408 0.0420 0.0519 54 0.0370 0.0381 0.0437
60 0.0381 0.0406 0.0514 60 0.0358 0.0369 0.0431

Table 7: Annualized certainty equivalent return estimates computed under the assumption that
the break point model is the return generating process. Asset allocations are computed when the
investor (i) ignores breaks and parameter uncertainty; (ii) ignores breaks but accounts for parameter
uncertainty; and (iii) accounts for breaks and parameter uncertainty. The horizon is measured in
months.
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